Solutions to the WIKR-06 exam of 20 June 2019

June 19, 2019
$1 \mathbf{a}$

$$
p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)= \begin{cases}\frac{\mu^{x} e^{-\mu}}{x!} \cdot\binom{x}{y} p^{y}(1-p)^{x-y} & x, y \text { integers with } 0 \leq y \leq x, \\ 0 & \text { otherwise. }\end{cases}
$$

1b

For $y \in\{0\} \cup \mathbb{N}$:

$$
\begin{aligned}
\mathbb{P}(Y=y) & =\sum_{x} \mathbb{P}(X=x, Y=y)=\sum_{x \geq y} \frac{\mu^{x} e^{-\mu}}{x!} \cdot\binom{x}{y} p^{y}(1-p)^{x-y}=\frac{(\mu p)^{y}}{y!} e^{-\mu} \sum_{x \geq y} \frac{(\mu(1-p))^{x-y}}{(x-y)!} \\
& =\frac{(\mu p)^{y}}{y!} e^{-\mu} \sum_{\ell=0}^{\infty} \frac{(\mu(1-p))^{\ell}}{\ell!}=\frac{(\mu p)^{y}}{y!} e^{-\mu} e^{+\mu(1-p)}=\frac{(\mu p)^{y}}{y!} e^{-\mu p} .
\end{aligned}
$$

We recognize this as the pmf of the $\operatorname{Poi}(\mu p)$.

1c

We first need to find $\mathbb{E} X Y$.

$$
\begin{aligned}
\mathbb{E} X Y & =\sum_{x, y} x y \mathbb{P}(X=x, Y=y)=\sum_{x=0}^{\infty} \sum_{y=0}^{x} x y \frac{\mu^{x} e^{-\mu}}{x!}\binom{x}{y} p^{y}(1-p)^{x-y} \\
& =\sum_{x=0}^{\infty} x \frac{\mu^{x} e^{-\mu}}{x!} \sum_{y=0}^{x} y\binom{x}{y} p^{y}(1-p)^{x-y}=\sum_{x=0}^{\infty} x^{2} p \frac{\mu^{x} e^{-\mu}}{x!} \\
& =p \mathbb{E} X^{2},
\end{aligned}
$$

recognizing the sum over y as the expectation of a $\operatorname{Bin}(x, p)$. Since X is Poisson, we know from lectures (it would also be fine if you worked this out in the exam of course) that $\mathbb{E} X=\mu^{2}+\mu$. Hence

$$
\mathbb{E} X Y=p\left(\mu^{2}+\mu\right)
$$

On the other hand $\mathbb{E} X=\mu, \mathbb{E} Y=\mu p, \operatorname{Var} X=\mu, \operatorname{Var} Y=\mu p$ (using 1 b and our knowlegde of the Poisson distribution from lectures - or of course working out the expectation and variance of a Poisson from scratch). So

$$
\rho_{X, Y}=\frac{\mathbb{E} X Y-\mathbb{E} X \mathbb{E} Y}{\sqrt{\operatorname{Var} X \operatorname{Var} Y}}=\frac{\mu^{2} p+\mu p-\mu^{2} p}{\sqrt{\mu^{2} p}}=\sqrt{p} .
$$

2a

(This pdf was used as an example in lectures - so this ought to have been an easy question for everyone.)
X, Y are not independent. For instance $\mathbb{P}(X>1), \mathbb{P}(Y<1)$ are both clearly positive, while $\mathbb{P}(X>1, Y<1)=0 \neq \mathbb{P}(X>1) \mathbb{P}(Y<1)$.

2b

We must have

$$
1=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=c \int_{0}^{\infty} \int_{x}^{\infty} e^{-y} d y d x=c \int_{0}^{\infty} e^{-x} d x=c
$$

2c
For $x>0$ we have:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{x}^{\infty} e^{-y} d y=e^{-x}
$$

(If $x \leq 0$ then $f_{X}(x)=0$.)

2d

For $y \leq 0, f_{Y}(y)=0$ clearly. For $y>0$:

$$
f_{Y}(y)=\int_{0}^{y} e^{-y} d x=y e^{-y}
$$

2 e
We set $U=X, Y=X+Y$ and use the change of variables theorem. Note

$$
\left(\begin{array}{ll}
\frac{\partial U}{\partial X} & \frac{\partial U}{\partial Y} \\
\frac{\partial V}{\partial X} & \frac{\partial V}{\partial Y}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right)
$$

has determinant one. Hence

$$
f_{U, V}(u, v)=f_{X, Y}(x(u, v), y(u, v))= \begin{cases}e^{-(v-u)} & \text { if } 0<u<v-u \\ 0 & \text { otherwise }\end{cases}
$$

Now we get f_{V} via

$$
f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d u=\int_{0}^{v / 2} e^{-v+u} d u=e^{-v / 2}-e^{-v}
$$

(for $0<v<\infty$.)

3a

All permutations of the $a+b$ votes are equally likely. The number of ways to get a vote for A last is $a \cdot(a+b-1)!$. (Choose the last vote to be one of the a votes for A and arrange the other $a+b-1$ votes in a sequence arbitrarily.) Hence

$$
\mathbb{P}(\text { last ballot is vote for } A)=\frac{a \cdot(a+b-1)!}{(a+b)!}=\frac{a}{a+b}
$$

3b

Base case. The statement is clearly true when $a, b \leq 1$.
Induction step. Let a, b be arbitrary nonnegative integers, and assume the statement is true for all a^{\prime}, b^{\prime} with $a^{\prime} \leq a, b^{\prime} \leq b,(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$. If $a=0$ or $b=0$ then clearly the formula holds, so we may assume $a, b \geq 1$. Also, if $a \leq b$ then it is clearly impossible for A to be always ahead. So then the probability is zero and hence the formula is correct. We can assume $a>b \geq 1$ from now on.

We condition on the last vote. Let $E=\{$ last vote is for $A\}$. Note that the probability that A was ahead at all times given that E occurred is the same as the probability that A is always ahead in a situation with $a-1$ votes for A and b votes for B. Hence by the induction hypothesis

$$
\mathbb{P}(A \text { always ahead } E)=\frac{a-b-1}{a+b-1}
$$

Similarly, the probability that A was ahead at all times given that E did not occur is the same as the probability that A is always ahead in the situation with a votes for A and $b-1$ votes for B. So, again using the induction hypothesis:

$$
\mathbb{P}\left(A \text { always ahead } \mid E^{c}\right)=\frac{a-b+1}{a+b-1} .
$$

Using 3a, it follows that

$$
\begin{aligned}
\mathbb{P}(A \text { always ahead }) & =\mathbb{P}(E) \mathbb{P}(A \text { always ahead } \mid E)+\mathbb{P}\left(E^{c}\right) \mathbb{P}\left(A \text { always ahead } \mid E^{c}\right) \\
& =\frac{a}{a+b} \cdot \frac{a-b-1}{a+b-1}+\frac{b}{a+b} \cdot \frac{a-b+1}{a+b-1}=\frac{a^{2}-a b-a+a b-b^{2}+b}{(a+b)(a+b-1)} \\
& =\frac{(a-b)(a+b-1)}{(a+b)(a+b-1)}=\frac{a-b}{a+b} .
\end{aligned}
$$

