Solutions to the WIKR-06 exam of 20 June 2019

June 19, 2019
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We recognize this as the pmf of the Poi(up).
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We first need to find EXY.
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recognizing the sum over y as the expectation of a Bin(x, p). Since X is Poisson, we know from
lectures (it would also be fine if you worked this out in the exam of course) that EX = u? + p.
Hence

EXY = p(p® + p).

On the other hand EX = u, EY = up, Var X = pu, VarY = pup (using 1b and our knowlegde of
the Poisson distribution from lectures — or of course working out the expectation and variance of
a Poisson from scratch). So
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(This pdf was used as an example in lectures — so this ought to have been an easy question for
everyone.)

X,Y are not independent. For instance P(X > 1),P(Y < 1) are both clearly positive, while
PX>1,Y<1)=0#P(X >1)PY < 1).
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We must have
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For x > 0 we have:
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(If <0 then fx(z) =0.)
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For y <0, fy(y) = 0 clearly. For y > 0:
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We set U = X,Y = X +Y and use the change of variables theorem. Note
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has determinant one. Hence

Jov(u,v) = fxy(@(u,v),y(u,v)) = {

Now we get fy via
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(for 0 < v < 0.)
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All permutations of the a + b votes are equally likely. The number of ways to get a vote for A
last is @ - (a + b — 1)!. (Choose the last vote to be one of the a votes for A and arrange the other
a+ b— 1 votes in a sequence arbitrarily.) Hence

a-(a+b—1)! a
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Base case. The statement is clearly true when a,b < 1.
Induction step. Let a,b be arbitrary nonnegative integers, and assume the statement is true for
all /|0 with a’ < a,b <b,(a,b) # (a/,V'). If a =0 or b = 0 then clearly the formula holds, so we
may assume a,b > 1. Also, if a < b then it is clearly impossible for A to be always ahead. So then
the probability is zero and hence the formula is correct. We can assume a > b > 1 from now on.
We condition on the last vote. Let E = {last vote is for A}. Note that the probability that A
was ahead at all times given that E occurred is the same as the probability that A is always ahead
in a situation with a — 1 votes for A and b votes for B. Hence by the induction hypothesis

_a—b—1
Ca+b-1

Similarly, the probability that A was ahead at all times given that E did not occur is the same
as the probability that A is always ahead in the situation with a votes for A and b — 1 votes for
B. So, again using the induction hypothesis:
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Using 3a, it follows that
P(A always ahead) = P(E)P(A always ahead|E) + P(E€)P(A always ahead|E*)
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